A Comparison of Sampling Techniques for Uncertainty Quantification

نویسندگان

  • Steven Holman
  • Cory Rupp
  • Ryan Maupin
چکیده

Uncertainty quantification in numerical simulations generally relies on applying sampling techniques to select input parameters for a suite of deterministic calculations and then combining the results of the calculations into output distributions. Several approaches, including metamodeling and Latin Hypercube Sampling, are prevalent today. This paper will focus on the comparison of several common sampling techniques as applied to the validation of a transient dynamics finite element calculation on a spherical marine float drop test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Polynomial Chaos Techniques for Uncertainty Quantification of a Gas Cooled Fast Reactor Transient

Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing hig...

متن کامل

Forward and Backward Uncertainty Quantification in Optimization

This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.

متن کامل

Comparison of Uncertainty Propagation / Response Surface Techniques for Two Aeroelastic Systems

Uncertainty has always been an important consideration when designing, analyzing and testing engineered systems, but computational investigations of the effects of uncertainty are only now beginning to become feasible. Often the limiting factor is the computational expense required to assess the influence of uncertainty on the system. This work provides an overview of techniques that seek to re...

متن کامل

Error and Uncertainty Quantification and Sensitivity Analysis Inmechanics Computationalmodels

Multiple sources of errors and uncertainty arise in mechanics computational models and contribute to the uncertainty in the final model prediction. This paper develops a systematic error quantification methodology for computational models. Some types of errors are deterministic, and some are stochastic. Appropriate procedures are developed to either correct the model prediction for deterministi...

متن کامل

Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification

Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004